
Interactive Embedded Systems
Learning using the Prairie Learn

Framework
Team: sdmay25-33

Project Manager: Caden Otis
Consultant: Devin Alamsya
Technical Lead: Justin Cano

Quality Assurance: Joseph Krejchi
Notetaker: Rachel Druce-Hoffman

Client and Advisor: Phillip Jones

Project Plan

2

Project Overview
● Create an interactive application for CPRE 2880

students to better understand the concepts
○ HWs and quizzes
○ Randomized questions and autograding
○ Use emulation tools to simulate

microcontrollers
○ Potentially have an emulated Cybot robot

interface

● PrairieLearn framework to host the application

● Utilize Python, HTML, C and other
programming languages

● Hope to inspire other professors to build
similar interactive tools for their students

3

Problem Statement
● Students don’t get enough practice of concepts

○ Little feedback on Canvas HW submissions

● Not always availability to practice programming on

the microcontroller in the lab

● Limited time to meet with Professor and TAs

○ Lab, class, office hours

● Limited capabilities with Canvas platform

4

Functional Requirements

● All homeworks should be implemented

○ Code of each homework should also be

documented for future development

● Most questions should be autograded

○ Includes student-written coding segments

● All questions should be randomized for unlimited

practice

○ As many parameters within the problem

should be randomized as possible
5

Non-functional Requirements

● USER EXPERIENCE: New question types designed and implemented

focusing on interactiveness

● USER EXPERIENCE: Questions formatted to be easy for the user to

understand and interact with

● RESOURCE: Implement the Virtual Cybot/Emulated Cybot interface

so students can test their code.

● RESOURCE: Documentation written about each aspect of our

implementation

○ Allow for continued development

○ Tutorials for other classes setting up PL

● AESTHETIC: No bugs/typos 6

What Makes Our Project Unique

● Tailored to just CPRE 2880 content

● Uses emulation tools to create unique, engaging
questions

○ Simulates real hardware (LM3S6965 and
TM4C123GH6PM boards)

● In complete control of what’s created

● Free

● Immediate Feedback

7

Potential Risks and Mitigation

● Team member is not completing their work or showing

up to meetings

○ Communicate with team member and advisor

○ Give reminder of team contract

● Answer Leakage

○ Ensure correct answers aren’t accessible until after

the student has submitted their own answer

● Product may perform worse than Canvas in beta testing

○ Adapt using student feedback to ensure that the end

product performs better than other solutions

8

Resource/Cost Estimate

● Total development and use of our project is free

○ Use of PrairieLearn framework is free for

development

○ Hosting PrairieLearn is free via ISU VM server

○ No cost for creating custom emulation tools

9

Project Milestones
Fall Semester:

● Complete partial Beta version of the application

○ Will be used for CPRE 2880 course in Spring 2025
semester

● HWs 1-6 implemented into Prairie Learn

Spring Semester:

● Implement all homeworks

● Update and complete documentation

● Full Canvas integration

● User feedback collection and improvements based on that
feedback 10

Project Schedule/Timeline

11

Server Setup:
Get Prairie Learn server initialized
Get ASW to sign PrairieLearn Server Certificate for SSL
Get ISU Integration with Okta for student authentication

Begin Question Implementation:
Review CPRE 2880 concepts
Learn how to use PrairieLearn
Begin coding questions
Learn how to use Cybot emulator
Learn how to use student code autograder
Learn how to use the emulation tools that are already
incorporated
Finish implementing questions for HW 9
Finish implementing questions for HW 12

Improve Questions:
Learn how to make variants of questions by adding
randomization
Update existing questions to make them fully autogradeable

Course Functional on VM:
Get our server VM running PrairieLearn with all questions

Documentation:
Update Local setup documentation
Update server setup documentation
Update documentation for question implementation
Update documentation videos

288 PrairieLearn Demo: existing HWs implemented with
autograded, randomized

Project Schedule/Timeline

12

System Design

13

Functional Decomposition

14

Detailed Design

15

Software Platforms Used

● PrairieLearn Framework

● Git

● Linux

● Docker

● ISU VM

16

Test Plan
● Unit testing

○ Verify individual homework questions, autograding, and server
setup

● Interface testing

○ Ensure "student view" and "dev view" interfaces function
correctly and provide a seamless user experience

● Integration testing

○ Test the synchronization of grades between the application and
Canvas using mock courses

● System testing

○ Conduct end-to-end testing of all functionalities to confirm
system coherence and reliability

17

Test Plan Continued
● Regression testing

○ Validate that new updates do not disrupt existing features

● Acceptance testing

○ Get feedback from client and students

● Security testing

○ Make sure only ISU students and professors can access our

project

18

Prototype Implementations

19

Prototype Implementations

20

Prototype Implementations

21

Conclusion

22

Current Status of Project

● A partial beta version will be released at the end of this semester

○ Homeworks 1-6 Finalized

■ Focusing on randomization, autograde capabilities, and quality of format

● Working authentication

○ Google OAuth works

○ ISU SSO still needs to be implemented

23

Task Breakdown of Each Member

24

Member Responsibilities Contributions

Joseph Krejchi Quality Assurance Fixed HW4; Researched QEMU ARM
autograder

Devin Alamsya Consultant Fixed HW2 along with various other short
answer questions; Developed a new
question format

Caden Otis Project Manager Fixed HW12 1a and HW3; Researched
QEMU ARM autograder

Rachel Druce-Hoffman Notetaker Improved HW6; Developed new question
format; Recorded meeting events and
feedback for future reference

Justin Cano Technical Lead Initialized and secured server VM; Set up
Prairielearn; Worked with ASW to get SSL
encryption on the server; Implemented
SSO

Plan for Next Semester

● Perform a beta test for Spring 2025

● Fully implement homeworks 7-12

○ Considering feedback from beta test

● Fix various bugs/issues

● Work on finishing the virtual cybot emulator

○ Switch from bare bones emulator to Cybot emulator

● Write new questions not based on currently existing homeworks

25

Q&A

26

