Interactive Embedded Systems
Learning using the Prairie Learn

Framework

Team: sdmay25-33

Project Manager: Caden Otis
Consultant: Devin Alamsya
Technical Lead: Justin Cano

Quality Assurance: Joseph Krejchi
Notetaker: Rachel Druce-Hoffman

Client and Advisor: Phillip Jones

oy

Project Plan

Project Overview
e Create an interactive application for CPRE 2880

students to better understand the concepts Which of these appliances/products use an embedded-processor?
o HWs and quizzes
o Randomized questions and autograding B R o ‘
o Use emulation tools to simulate \
microcontrollers
o Potentially have an emulated Cybot robot [
interface

Acoustic guitar

Basketball

Calculator

Printer

® PrairieLearn framework to host the application

Screwdriver

e Utilize Python, HTML, C and other
programming languages

Shovel

Vending machine

. JL JL L L JL L L)

Washing machine

e Hope to inspire other professors to build
similar interactive tools for their students

Save & Grade Single attempt Additional attempts available with new variants @

Problem Statement

Students don’t get enough practice of concepts
o Little feedback on Canvas HW submissions

e Not always availability to practice programming on
the microcontroller in the lab

e Limited time to meet with Professor and TAs
o Lab, class, office hours

Limited capabilities with Canvas platform

Functional Requirements

e All homeworks should be implemented

o Code of each homework should also be
documented for future development

® Most questions should be autograded
o Includes student-written coding segments

e All questions should be randomized for unlimited
practice

o As many parameters within the problem
should be randomized as possible

Non-functional Requirements

USER EXPERIENCE: New question types designed and implemented
focusing on interactiveness

e USER EXPERIENCE: Questions formatted to be easy for the user to
understand and interact with

e RESOURCE: Implement the Virtual Cybot/Emulated Cybot interface

so students can test their code.

° RESOURCE: Documentation written about each aspect of our
implementation
o Allow for continued development

O Tutorials for other classes setting up PL

AESTHETIC: No bugs/typos

What Makes Our Project Unique

Tailored to just CPRE 2880 content

e Uses emulation tools to create unique, engaging
guestions

o Simulates real hardware (LM356965 and
TM4C123GH6PM boards) B k S
® In complete control of what’s created ZV OO
. coursera
[J

Immediate Feedback

Potential Risks and Mitigation

e Team member is not completing their work or showing
up to meetings
o Communicate with team member and advisor
o Give reminder of team contract
® Answer Leakage
o Ensure correct answers aren’t accessible until after
the student has submitted their own answer
® Product may perform worse than Canvas in beta testing
o Adapt using student feedback to ensure that the end
product performs better than other solutions

Resource/Cost Estimate

e Total development and use of our project is free

o Use of PrairieLearn framework is free for
development

© Hosting PrairieLearn is free via ISU VM server —

No cost for creating custom emulation tools

Project Milestones

Fall Semester:
e Complete partial Beta version of the application

o Will be used for CPRE 2880 course in Spring 2025
semester

e HWs 1-6 implemented into Prairie Learn
Spring Semester:

e Implement all homeworks

e Update and complete documentation

e Full Canvas integration

e User feedback collection and improvements based on that
feedback

10

Server Setup:

Get Prairie Learn server initialized

Get ASW to sign PrairieLearn Server Certificate for SSL
Get ISU Integration with Okta for student authentication

Begin Question Implementation:
Review CPRE 2880 concepts
Learn how to use PrairieLearn
Begin coding questions

Learn how to use Cybot emulator
Learn how to use student code autograder

Learn how to use the emulation tools that are already
incorporated

Finish implementing questions for HW 9
Finish implementing questions for HW 12

Project Schedule/Timeline

Improve Questions:

Learn how to make variants of questions by adding
randomization

Update existing questions to make them fully autogradeable

Course Functional on VM:
Get our server VM running PrairieLearn with all questions

Documentation:

Update Local setup documentation

Update server setup documentation

Update documentation for question implementation
Update documentation videos

288 PrairieLearn Demo: existing HWs implemented with
autograded, randomized

11

Project Schedule/Timeline

Week 5 Week 6 Week 7 Week 8 Week 9 Week 10 Week 11 Week 12 Week 13 Week 14 Week 15 Week 16
Get Prairie Learn server initialized
Get ASW to sign PrairieLearn Server Certificate for SSL
Get ISU Integration with Okta for student authentication
Review CPRE 2880 concepts
Learn how to use PrairieLearn
Begin coding questions
Learn how to use Cybot emulator
Learn how to use student code autograder
Learn how to use the emulation tools that are already incorporated
Finish implementing questions for HW 9
Finish implementing questions for HW 12
Learn how to make of by adding
Update existing questions to make them fully autogradeable
Get our server VM running PrairieLearn with all questions
Update Local setup documentation
Update server setup documentation
Update for i
Update documentation videos
288 PrairieLearn Demo:

HwWs

12

oy

System Design

13

Functional Decomposition

Get PrairieLearn

Server initialized

A

Get ASW to sign

Get ISU Integration
»| with Okta for student

PrairieLearn Server
Certificate for SSL

Review CPRE 2880
concepts

Begin coding
questions

Learn how to use J

PrairieLearn

Update server setup
documentation

Update Local setup
documentation

Learn how to use

Cybot emulator

Learn how to use

student code —

autograder

Learn how to use the
emulation tools that are
already incorporated

authentication

Finish implementing

Update existing
questions to make

|—> questions for HW 9

Finish implementing
questions for HW 12

vyy

Get our server VM
running PrairieLearn
with all questions

Update
documentation for

Update

question
implementation

”|documentation videos

A

them fully
autogradeable

288 PrairieLearn Demo:
existing HWs
A implemented with
autograded, randomized

>

Learn how to make
variants of questions by
adding randomization

14

Detailed Design

ssH
SSH HITP Port
Port 22 3000
UFW
(Firewall)
Open
Network Traftic Ports: HTTP
22 Port 80
80 HITP Tratie
443 Rodroct
NGINX
HTTPS
Port 443

Container Question
{Prairie Leam)
Quesion 1 Queston2 | ... | CQuestionn Infe.jscn
Contaner himi
™ (Autograden P~ question.himi
Homewark 2
senvarpy
- Comtaner
(Autogradar) Quession 1 Queston2 .. Guestion n st fles for
autograders
—» Contaner o
(Autcgradary
Homewark n
L, Quesdon 1 Queston2 .. Question n
(Autograder)
User Accourts
Professors ’ Ths | Students |
Canvas
API
Microsoft Authentication

15

Software Platforms Used

® PrairieLearn Framework

e Git
® Linux
e Docker

ISU VM

Test Plan

® Unit testing

o Verify individual homework questions, autograding, and server
setup

® Interface testing

o Ensure "student view" and "dev view" interfaces function
correctly and provide a seamless user experience

® Integration testing

o Test the synchronization of grades between the application and
Canvas using mock courses

e System testing

o Conduct end-to-end testing of all functionalities to confirm
system coherence and reliability

Test Plan Continued

® Acceptance testing

® Regression testing

o Validate that new updates do not disrupt existing features =

o Get feedback from client and students ‘ ———

® Security testing S

o Make sure only ISU students and professors can access our
project

18

Prototype Implementations

e L. . . . Choose the main 6 components that make up the inside of a Microcontroller chip. Match the description of each of the
Choose the main 6 components that make up the inside of a Microcontroller chip. Match the description of each of the components you choose.

components you choose.

Component One: (d) Bootstrap Memory -

Component One: (a) Program Memory >
Matching description for component one:

. L (e) This is the area of the microcontroller where the embedded systems developers’ application code is located. ~
Matching description for component one:

Select an option -
Component Two: (b) Quantum Processor -
Serectan upuorT Matching description for component two:
(a) This is the area of the GPU where the embedded systems pmgrammers: application code is placed (c) This is the area of the bus that has circuitry that is written to, and then follows the direction of the coded found in the
Flash Memory
(b) This is the area of the actuator where the embedded systems engineers' application code is created.
(c) This is the area of the FPGA where the embedded systems specialists’ application code is reviewed.
. o . Component Three: (d) Working Buffer -
(d) This is the area of the ASIC where the embedded systems operators’ application code is tested.
(e) This is the area of the microcontroller where the embedded systems developers’ application code is located. Matching description for component three:

(e) This is the area of the debugger where application information is erased. Example of this information are the status of

(f) This is the area of the sensor where the embedded systems architects’ application code is located.
flags and stacks.

Select an option -
Component Four: (d) /O Hub v

Matching description for component four:

(d) This is the area of the GPU that allows the microcontroller to send/receive with the software environment. ~ ~

19

Prototype Implementations

Coding Practice Score: 1/1 (100%)

Complete the following function, max_consecutive_1s, so that it returns the maximum number of consecutive

1's in the variable that is passed to it. Test Resu Its

For example, for OxFF5F the max number of consecutive 1's is 8.
Another example, for 0x77FE the max number of consecutive 1's is 10. v [1/1] Test command: ./studentCode A
unsigned char max_consecutive 1s(unsigned short x) .
Max points: 1
¥
Earned points: 1
int main()
unsigned char max = max_consecutive_1s(@xFF5 Message
return 9; 9
¥
ected all of:
studentCode.c n TEST 1 PASSED
1 pinclude <stdio.h> TEST 2 PASSED
2 #include <stdlib.h>
3 TEST 3 PASSED
5 unsigned char max_consecutive_1s(unsigned short x) TEST 4 PASSED
- KT TEST 5 PASSED
s unsigned char count = o;
9 unsigned char max_count = @;
10
1 for(i=e; 1 < 16; ir+)
12~ {
13 IF((x >> 1) & ex1)
18- { Output
15 count++;
16 ¥
17
18 else
19~ { TEST 1 PASSED
20 count = e;
21 } TEST 2 PASSED
= 1#(count > max_count) TEST 3 PASSED
e b ot oot TEST 4 PASSED
26 D
= 3 TEST 5 PASSED
28 20

return max_count;

Prototype Implementations
e

v [1/1] Testing with random inputs
Arithmetic

Given the following declarations, write the assembly code to implement each functionality.

Max points: 1

Earned points: 1

unsigned int a;

unsigned int b; Message

Expected all of:

For this function: performa=b + 9

student.s n

1 L.global _arithmetic

2 _arithmetic:

3 MOV RO, ©x0384

- MOVT RO, 0x2080

5 MOVIW R1, @x@51c

6 MOVT R1, @x2000 Output
7 LDR R2, [R1]

8 ADD R2, #9

9

e

:1R152, [Re] Timer with period zero, disabling

i

——————~ (NO ENDING LINE BREAK)
[Restore original file

21

oy

Conclusion

22

Current Status of Project

® A partial beta version will be released at the end of this semester
o Homeworks 1-6 Finalized
m Focusing on randomization, autograde capabilities, and quality of format
e Working authentication
o Google OAuth works

o ISU SSO still needs to be implemented

23

Task Breakdown of Each Member

Member

Responsibilities

Contributions

Joseph Krejchi

Quality Assurance

Fixed HW4; Researched QEMU ARM
autograder

Devin Alamsya

Consultant

Fixed HW2 along with various other short
answer questions; Developed a new
question format

Caden Otis

Project Manager

Fixed HW12 1a and HW3; Researched
QEMU ARM autograder

Rachel Druce-Hoffman

Notetaker

Improved HW6; Developed new question
format; Recorded meeting events and
feedback for future reference

Justin Cano

Technical Lead

Initialized and secured server VM; Set up
Prairielearn; Worked with ASW to get SSL
encryption on the server; Implemented
SSO

Plan for Next Semester

Perform a beta test for Spring 2025

e Fully implement homeworks 7-12
o Considering feedback from beta test

e Fix various bugs/issues

e Work on finishing the virtual cybot emulator

o Switch from bare bones emulator to Cybot emulator

Write new questions not based on currently existing homeworks

25

Nz

Q&A

